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Abstract. The present paper focuses on an analytical analysis which 

describes the evolution of the relativistic charged bosons in magnetar’s crust. 

Starting with the Klein-Gordon equation, the Heun Biconfluent functions are 

obtained for a strong static magnetic induction orthogonal to a radial electric field. 
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1. Introduction 
 

With a density up to an order of magnitude higher than the one of the 
nuclear matter, neutron stars are seen as laboratories where different subatomic 
particle processes are competing with each other (Weber, 1999). 

By studying the temporal variations in the incoming flux, the satellites 
are detecting the arrival time (microseconds) of each photon that hits the 
detector and plot the accumulated count rate as a function of time, c(t). This is 
than transformed to the frequency domain, using the Fourier analysis, and one 
gets the normalized power density spectrum. 

                                                 
Corresponding author; e-mail: murariu.narcisa@gmail.com 



48                                      Narcisa Murariu and Marina Aura Dariescu 
 

 

In the case of radio pulsars (about 1600 are known today), by timing the 
arrivals of radio pulses, the period of rotation and its derivative can be 
estimated. Assuming that the pulsar spin down is due only to magnetic dipole 
radiation, one can easily identify the rotation energy loss  
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P  being the spin period and P  its derivative, with the total time-average 
dipole radiated power defined as 
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Thus, one comes to the following relation for the surface magnetic field 

induction 
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where P is in units of seconds.  

In 1992, Duncan and Thompson introduced the notion of magnetars 
(Duncan and Thompson, 1992), for almost non-rotating neutron stars, whose 
magnetic field strength was estimated to be about 10

2
 to 10

3
 larger than the one 

of a neutron star. Now, by the name magnetars, we call eight AXPs (anomalous 
X-ray pulsars) and four SGRs (Soft gamma repeaters), which share several 
characteristics (Thompson and Beloborodov, 2005): 

 

 persistent X-ray luminosities in the range 34 3610 10 erg/s ; 

 spin periods between 2 and 12 s; 

 characteristic ages 

3 510 10 yrs,
2

P
T

P
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 the release of short  0.1s and spectrally hard X-ray bursts;  

 and a strong magnetic field, 14 1510 10 GB  .  

Presently, among the almost 1800 spindown-powered radio pulsars are 
known, with periods from about 1.5 ms to 8 s and an average magnetic field of 
~10

12 
G, the magnetars are a small group, characterized by a very strong X-ray 
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emission. This lead (when treating them as magnetic dipole radiators) to a 
magnetic field of about B~10

14
‒10

15 
G, larger than the critical induction at 

which the cyclotron energy of an electron equals the electron rest mass energy. 
Up to now, magnetars are considered the only source of giant flares, 

which are the brightest cosmic events originating outside the solar system, in 
terms of the flux received at Earth. 

In the last almost 20 years since Duncan and Thompson published their 
seminal work (Duncan and Thompson, 1992), the intense study on such 
astrophysical objects has led to many open questions, especially related to the 
configuration of the magnetic field inside and to their structure. Besides its 
birth, the mechanism of converting the strong magnetic fields into radiation has 
also been a main topic of investigations. In this respect, many ideas are coming 
from the so-called Suzaku experiment (Mitsuda et al., 2007), which has 
performed pointed observations on bright presently known magnetars. 

In what it concerns the theoretical description of the magnetic field, 
most of the proposed models are dynamical, with the magnetic field 
evolving from the birth to the star's decay, through different processes 
(Goldreich and Reisenegger, 1992). However, soon after the crust forms, 
(around 100 s after collapse), the magnetic field is freezing, and they can be 
treated as stationary objects. 

For many years, the equation derived by Goldreich and Reisenegger 
(1992) has been considered as a reliable tool for understanding the evolution of 
both isolated and accreting neutron stars, due to the Hall effect and Ohmic 
diffusion (Hoyos et al., 2008; Cumming et al., 2004), 
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For some characteristic depth of the crust, d, the Ohmic decay time is 
given by 
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which is a typical value for the outer crust at temperature 
810 KT   and the 

Hall time is 
222

15
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Hall

ned d B

cB
 

  
    

   
  

 

where n is the electron number density. 
Thus, for strong magnetic fields, the Hall time is several orders of 

magnitude faster than the Ohmic one. The Hall drift evolves the magnetic field 
into a new configuration of equal total (conserved) energy, being unable to 
cause decay by itself. However, by changing the field structure on Hall 
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timescale, it may give rise to a turbulent cascade, enhancing the efficiency of 
Ohmic total energy decay, as Goldreich and Reisenegger suggested, in 1992. 
 The energy is transferred from large to small scales, with an energy 

spectrum 
2

1
kE

k
 , and a dissipative cutoff occurring at 0k B . 

Following Goldreich and Reisenegger's seminal work, numerous 
authors have studied this phenomenon via theoretical and numerical methods, in 
both spherical-shells (Hollerbach and Rudiger, 2004) and Cartesian box 
geometries (Biskamp et al., 1999). 

A neutron star is made of atmosphere and four main internal regions: 
the outer and inner crust and the outer and inner core (containing up to 99% of 
the star's mass). 

While the outer core consists of a soup of nucleons, electrons and 

muons, the matter in the inner core may be compressed to densities that are up 

to an order of magnitude greater than the density of ordinary atomic nuclei, 

depending on star mass and rotational frequency. This extreme compression 

provides a high-pressure environment in which exotic subatomic particles may 

be formed. 

Even though there is a large activity in the field, which has raised some 

debatable issues, until now studies on the contribution of meson resonances in 

stars with dying magnetic fields have not been done to a large extent. One can 

expect that, for a neutron star with a wide range of densities, from the density of 

iron nucleus at the surface to several times the normal nuclear matter density in 

the core, the existence of boson condensates has an important influence on the 

star properties (Pal et al., 2000). Based on results obtained by Kaplan and 

Nelson (1986), who have studied the negatively charged antikaon condensation 

in dense baryonic matter formed in heavy-ion collisions, the kaons are seen as 

best candidates for matter inside superdense astrophysical objects, besides 

nucleons and leptons. 
 One may conclude by saying that there is no doubt that scalar fields, if 

exist, are leading to fingerprints in the observable stellar quantities that can be 
measured with the advanced technology of observational radio and X-ray 
astronomy. 
 

2. Klein-Gordon Equation for Bosons 

 in Magnetar's Crust 
 

For describing the relativistic complex charged bosons of mass m0, 

evolving in the magnetar's crust with a static magnetic field orthogonal to an 

electric field, we start with the U(1)-gauge invariant Lagrange density 
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where Di stands for the U(1)-gauge covariant derivative, with 1,4i  , 
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and we have inserted h and c for a better comparison with data. 

We use the general form of the gauge potential 
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which satisfy the condition 0i

i A    

 The expressions (3) are corresponding to a constant magnetic field 

along the Oz-direction, 

12 0z x y y xB F A A B     , 

and a static electric field E V 


. By employing the usual procedure, we 

come to the corresponding Euler-Lagrange equation 
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whose explicit form is 
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The above formula suggests us to switch to cylindrical coordinates: 
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With the standard variable’s separation 
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the Eq. (5) leads to the following differential equation for the   depending part,  
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where we have introduced the notation .k p const     

One may notice that, with the new quantum number 
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and the change of function 
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the Eq. (7) gets the simpler expression 
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whose integration procedure strongly dependents on the explicit form of the 

electric potential  V  .  
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3. The Particular Case of the Static Magnetic Field 

 

The case of the zero or constant potential,   0V V   is completely 

analytically treatable, since the new variable 
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brings the differential Eq. (10) to the form 
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If one imposes the condition 
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leading to the energy levels 
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the solutions to (12) are the general Laguerre polynomials  
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Putting everything together, we come to the following solution for the 

field equation describing a charged boson evolving in constant magnetic and 

electric fields B0 and V0: 
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Let us focus on the second term in the r.h.s. of (14), which is expressing 

the quantum mechanics contribution. In the semi-relativistic limit and for a 

weak electric field, we define the rescaled Newtonian energy by 2
0m c   . 

For 2 2
0 00, 0, 0V V     , we end up with the following Landau-type energy 

levels: 
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For m q h , these are highly degenerated and can be filled by 

0Bn    charged particles of flux quanta 0 h q   per unit area. The ration 

between the number of electrons, N and nB is called the filling factor. 
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and can be integer or fractional, as in the integer or fractional QHE. The 

experimentally observed filling factor 1 2   has led to the idea of a 

condensation of electrons into composite quasi particles with a filling factor 

equal to one. Thus, the fractional Hall effect for electrons can be related to the 

integer Hall effect, for these composite particles.  

However, there are many open questions left, as for example the one on 

the impact of the spin of such pairs. In the case under consideration, we have 

noticed that the integer Bn q h  is affecting the azimuthal number m, which 

is switched to Bl m n  . Consequently, a change of the   by nB flux quanta 

moves a state described by ,n m  to , Bn m n  (up to a phase Bine 
). 

The non-relativistic electromagnetic current density defined by 
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has the following components coupled to 00,
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while the charge density is 
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One may notice that the non-trivial current density j  generates an 

additional z-oriented magnetic field 
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that vanishes for 2 2
Br r , 
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where  0Br qB   is the magnetic length. Using the normalization condition 

(15), which, for the wave function (16) turns into: 
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the axially generated magnetic field intensity (21) is given in terms of the 

cylinder radius and the magnetic induction as being: 
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Finally, let us focus on the charge density (20), which, in view of the 

relation (16), is given by 
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Up to the first contribution in 2 2(2 ),Br r  its integration is 
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being expressed in terms of Riemann Zeta-function and its generalization, 
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depending on r, 
0B  and on the number of flux quanta

Bn . 
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4. The Linear Potential and the Heun Functions 

 

Let us move now to a physically important case, namely the one of the 

linear potential 

  0V V
a


   , 

 

which generates a constant radial electric intensity 0pE V a  . 

 One may use the change of function 
 

   20 0

2
0

2
χ exp ,

4

l qB V
w

c aB


    

 
   

   
 (28) 

 

for which the Eq. (7) turns into  

 

 

2
0 0

2 2
0

2 2 2 2 4 2
0 02 2

2 2
0 0

2 4 2 2 2
0 0

42 1

1

2 14 2
0.

qB Vd w l dw

dd c aB

k c m c qB c
c

lV V
w

c a B c aB




 



 



 
    
  

        

 
  



 




 

 (29) 

 

In terms of the dimensionless variable 
 

0

2
 



qB
, 

 

the Eq. (29) becomes 

 

 

2
0

2 2
00

2 2
2 2 2 2 4 2 0

0 02 2 2 2
0 0

0

2
00

4 22 1
2

42

2 1 2 2
0.

Vd w l dw

qB dd c aB

V
k c m c qB c

qB c c a B

l V
w

qBc aB




 








 
    
  

  
      

   

 
 














 (30) 
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This has the form of the so-called Heun Biconfluent equation (Heun, 1889) 

 

     

2
2

2

1
2 1

2 0,
2

d u du

dd

u

  
 

  
  



      
 

  
     
 

 (31) 

 

whose parameters are: 

 

0

2
0

2 2
2 2 2 2 4 2 0

0 02 2 2 2
0 0

2 ,

4 2
,

42
2 1 ,

0

B

l

V r

ac B

V
l k c m c qB c

qB c c a B







 





 

 
       

  








 (32) 

 

The necessary condition for a polynomial form of 

 , , , ,u HeunB       being (Decarreau et al., 1978) 

 
 

 2 2 2 1n n l        

 

we get the following quantized energy levels 

 

              

 

1
2

2 2 2 2 4 2 0
0 0 2 2 2

0

4
1 1 .n

V
k c m c n qB c

c a B



 

       
  

  (33) 

 

By setting to zero the coefficient of 2  in the series expansion of 

HeunB, for 0   and 1n  , we get the following equation for the parameter 
,  

 2 2 2 24 2 3 8 0         , 

 

whose solutions are: 

1 2 2

8
1, 3. 


      

 

For 1 1,    i.e. 1 2l   , the solution (28) has the concrete expression 
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   
21

χ exp 1, ,3,0,
2 2

N HeunB
 

   


 
    

  
 

 

where the constant N comes from the normalization 

 
2

2

, , ,

00 0 0

2
χ χ χ 1n l n l n l

h
d d d

qB



    
 

     . 

 

To first order in ,  i.e. 2 ,Br   using the series expansion of the 

Heun function (Slavyanov and Lay, 2000) 

 

   2, , , , 1
2 2

HeunB z z z
  

   


 
  


 

 

namely 
 

1 ,
2

HeunB

   (34) 

 

the wave function (6) reads 

 

    
 

21
exp exp 1 ,

2 2 2

im i
Ne pz t   

  


    
         

     
 (35) 

 

with 
1

2
Bm n   and 

0

2
0

4 V

ac B

 
 


. 

 

Obviously, for 
0 0V   so that 0    in (32) and 1   , the 

solutions of (30) are 

 
1

nu H 


 , 

 

where 
nH  are the Hermit polynomials and, 

 

 

 
2 2 2

0 0n c nqB k m c   
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while the wave function (28) is expressed in terms of the Hermit associated 

function as 

 
21

χ exp
2

nH





 
 
  

  . 

 

For arbitrary 2 ,l   the solution of (30) is the confluent 

hypergeometric functions  

2

1 1 , 1,
2

n
u F l 

 
  
 

  

 
5. Conclusions 

 

In cylindric coordinates and for a constant magnetic field, the 

relativistic charged bosons in a magnetar’s crust is described by the Laguerre 

polynomials. The wave function leads to concrete expressions for the conserved 

current density components. The flux quantization and the usual Landau type 

energy levels are obtained. 

 For the physical case of a linear radial potential, the more involved case 

of the Heun Biconfluent equation is discussed. 
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SOLUȚII HEUN PENTRU BOZONI ÎNCĂRCAȚI ÎN CÂMP 

 MAGNETIC CU SIMETRIE AXIALĂ  

 

(Rezumat) 

 

Această lucrare are în atenție o abordare analitică asupra evoluției bozonului 

relativist încărcat în crusta unui magnetar. Plecând de la ecuațiile Klein-Gordon, 

obținem funcția Heun Biconfluentă pentru un câmp magnetic static, intens, ortogonal pe 

un câmp electric radial. 
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